MATHEMATICS SPECIALIST

MAWA Semester 2 (Unit 1 & Unit 2) Examination 2017

Calculator - assumed

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 6 of term 4, 2017

Section One: Calculator-free

(100 Marks)

Question 10(a)

Solution C = A - BC C + BC = A (I + B)C = A $C = (I + B)^{-1}A$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Marking key/mathematical behaviours	Marks
rearranges the matrix equation to isc	plate A 1
uses the identity matrix	1
• pre –multiplies by inverse matrix	1
solves for matrix A	1

Question 10(b)

Solution	Edit Action Interactive	×
$Det = 3 \times -x - 2 \times (x + 1) = 0$	$ \overset{0.5}{\longrightarrow} \overset{1}{fdx} \overset{fdx}{\longrightarrow} \overset{fdx}{\longrightarrow} \overset{fdx}{\checkmark} \overset{fdx}{\overset} \dot$	•
$\Leftrightarrow -5x = 2, x = \frac{-2}{5}$	$solve(-3 \cdot x - 2 \cdot (x+1) = 0, x)$	
5	$\left\{x=-\frac{2}{5}\right\}$	}
Marking key/mathematical behaviours		Marks
obtains an expression for determinant		1
equates determinant to zero		1
• solves for <i>x</i>		1

Question 11(a)

Solution		
	C O	
Prove that $\angle CBA = \frac{\pi}{2}$		
$\overrightarrow{CB} \cdot \overrightarrow{BA} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b})$		
= a∙a – b•b		
$=\left \mathbf{a}\right ^{2}-\left \mathbf{b}\right ^{2}=0$ since a and b are radii		
$\therefore \mathbf{a} \mathbf{b} \times Cos \ \angle CBA = 0$		
$\Leftrightarrow Cos \ \angle CBA \ = 0, \mathbf{a} = \mathbf{b} \neq 0$		
$\Rightarrow \angle CBA = \frac{\pi}{2}$		
Marking key/mathematical behaviours		Marks
Uses dot product		1
• Determines expression for \overrightarrow{CB}		1
• Determines expression for \overrightarrow{BA}		1
Shows that dot product equals zero		1
Summarizes result		

Question 11(a)

Solution	
RTP: $ OC ^2 + AB ^2 = AO ^2 + OB ^2 + BC ^2 + CA ^2$ $ OC ^2 + AB ^2 = \overline{OC} \cdot \overline{OC} + \overline{AB} \cdot \overline{AB}$ $= (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) + (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a})$ $= \mathbf{a} \cdot \mathbf{a} + 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b}$	
$= \mathbf{a}.\mathbf{a} + \mathbf{b}.\mathbf{b} + \mathbf{a}.\mathbf{a} + \mathbf{b}.\mathbf{b} \text{ since } BC = AO \text{ and } CA = OB $	
$ OC ^{2} + AB ^{2} = AO ^{2} + OB ^{2} + BC ^{2} + CA ^{2}$	
Marking key/mathematical behaviours	Marks
expresses statement as an equation.	1
 expresses diagonals as vectors in terms of a and b 	
uses dot product for magnitude squared	
• states that $ BC = AO $ and $ CA = OB $	1
shows both sides are equal	I

Question 12(a)(i)

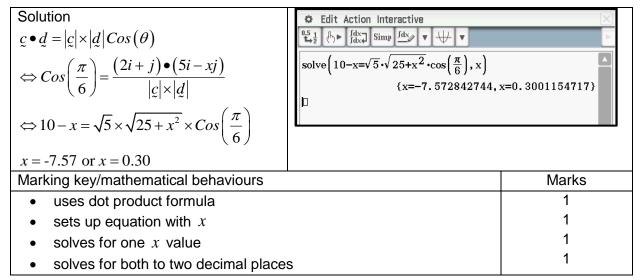
Solution	
$\left \begin{array}{c} \underline{a} \cdot \underline{a} = \left \underline{a} \right ^2 = 7^2 \end{array} \right $	
Marking key/mathematical behaviours	Marks
defines and uses scalar (dot) product	1

Question 12(a)(ii)

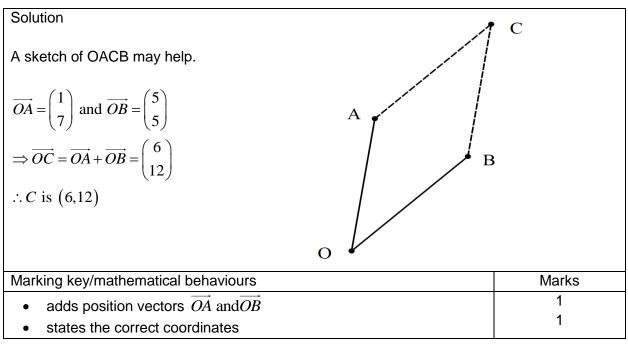
Solution	🗢 Edit Action Interactive		X
$a \bullet b = a \times b \cos(x)$	$ \begin{array}{c} 0.5 \\ \textcircled{1}{2} \\ \swarrow \end{array} \end{array} \xrightarrow{fdx} Simp \ \underline{fdx} \\ \hline \end{array} $		Þ
$\Leftrightarrow 31.5 = 7 \times 9 \times Cos(x)$	solve(31.5=7.9.cos(x) $0 \le x \le 180, x$)		{x=60}
$\Rightarrow x = 60^{\circ}$			
Marking key/mathematical behaviours		Marks	
uses dot product formula			1
solves for angle			1

Question 12(a)(iii)

Solution	
Projection of \hat{a} onto $\hat{b} = \hat{a} \cos \theta \times \hat{b}$	
Magnitude of projection $= a \cos \theta \times 1$	
$=7 \times \frac{1}{2} = 3.5$	
Marking key/mathematical behaviours	Marks
uses correct formula	1
solves for scalar projection	1


Question 12(b)(i)

Solution	
$d = 21i - 7j \qquad w = 2i - \mu j \qquad v = \lambda i + 15j$	
$d \bullet w = 0 \Leftrightarrow \begin{pmatrix} 21 \\ -7 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ -\mu \end{pmatrix} = 0$	
$\Leftrightarrow 42 + 7\mu = 0$	
$\Leftrightarrow \mu = -6$	
Marking key/mathematical behaviours	Marks
applies dot product = zero	1
determines dot product	1
solves unknown	1


Question 12(b)(ii)

Solution	
$ \begin{pmatrix} 21 \\ -7 \end{pmatrix} = \alpha \begin{pmatrix} \lambda \\ 15 \end{pmatrix} $	
$15\alpha = -7$ and $\alpha\lambda = 21$	
$\Rightarrow \alpha = \frac{-7}{15} \text{ and } \lambda = \frac{21}{\alpha} = 15 \frac{21}{-7} = -45$	
Marking key/mathematical behaviours	Marks
uses scalar multiple	1
• sets up equations for λ and α	1
• solves for λ	1

Question 13 (a)

Question 13 (b)

Question 13 (c)

Solution	A C
$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 7 \end{pmatrix} \overrightarrow{OB} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} \text{ and } \overrightarrow{OC} = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$	
Consider diagonals \overrightarrow{AB} and \overrightarrow{OC}	
$\overrightarrow{AB} = \begin{pmatrix} 5\\5 \end{pmatrix} - \begin{pmatrix} 1\\7 \end{pmatrix} = \begin{pmatrix} 4\\-2 \end{pmatrix} $ A	В
$\overrightarrow{AB} \bullet \overrightarrow{OC} = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \bullet \begin{pmatrix} 6 \\ 12 \end{pmatrix} = 4 \times 6 + (-2) \times 12$	В
= 24 - 24 = 0	
$\Rightarrow \overrightarrow{AB} \perp \overrightarrow{OC} \Rightarrow$ the diagonals of <i>OACD</i> are perpendicular O	
$\Rightarrow OACD$ is a rhombus	
Marking key/mathematical behaviours	Marks
• subtracts vectors \overrightarrow{OA} and \overrightarrow{OB} to get second diagonal	1
 shows the dot product of the diagonals = 0 	1
concludes that the diagonals are perpendicular	
concludes that the given figure is a rhombus	1

Question 14(a)(i)

Solution	
52-25=27	
81-18=63	
Marking key/mathematical behaviours	Marks
one example	1
 two examples 	1

Question 14(a)(ii)

Solution	
The difference is always a multiple of three	
Marking key/mathematical behaviours	Marks
States the correct result	1

Question 14(a)(iii)

Solution	
The result is always true	
ab = 10a + b	
ba = 10b + a	
difference = 10(a-b) + b - a	
= 9(a-b)	
=3 3(a-b)	
Marking key/mathematical behaviours	Marks
states that result is always true	1
expresses two-digit numbers in place value algebraically	1
 shows that difference is a multiple of three 	1

Question 14(b)

Solution Assume that $x =$ smallest rational number greater than zero exists.	
The value of $\frac{x}{2}$ is smaller than x but still rational $0 \le \frac{x}{2} \le x$, contradiction.	
∴ assumption is wrong and that there is no smallest rational number greater that Marking key/mathematical behaviours	Marks
assumes smallest rational number greater than zero, exists	1
derives an illogical result	1
summarizes that opposite is true	1

Question 15

Solution
$n(A) = \frac{100}{2} = 50$ $n(B) = \frac{100}{3} = 33$ $n(C) = \frac{100}{5} = 20$
$n(B \cap C) = \frac{100}{15} = 6 \qquad n(A \cap B) = \frac{50}{3} = 17 \qquad n(A \cap C) = \frac{50}{5} = 10$
$n(A \cap B \cap C) = \frac{50}{15} = 3$
= Hence
$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(B \cap C) - n(A \cap B) - n(A \cap C) + n(A \cap B \cap C)$
= 50 + 33 + 20 - 6 - 17 - 10 + 3 = 73
$n\overline{\left(A \cup B \cup C\right)} = 100 - 73 = 27$
Therefore numbers which are odd and/or divisible by 3 or $5 = 50+33+20-17-10-6+3=73$ Therefore numbers which are not odd nor divisible by 3 nor $5 = 100-73=27$

Marking key/mathematical behaviours	Marks
 determines correctly the seven subsets 	4
• correctly uses the inclusion-exclusion principle to determine $n(A \cup B \cup C)$	1
• correctly determines $n(\overline{A \cup B \cup C})$	1

Question 16(a)

Solution	
$4\sin\theta\cos^2\frac{\theta}{2}$	
$= 2\sin\theta \ 2\cos^2\frac{\theta}{2}$	
$= 2\sin\theta(\cos\theta+1)$	
$= 2\sin\theta\cos\theta + 2\sin\theta$	
$= \sin 2\theta + 2\sin \theta$	
$\therefore A = 1, B = 2$	
Marking key/mathematical behaviours	Marks
• expresses as $2\sin\theta \ 2\cos^2\frac{\theta}{2}$	1
• applies $2\cos^2\frac{\theta}{2} = \cos\theta + 1$	1
• expands brackets and recognises $\sin 2\theta = 2\sin \theta \cos \theta$	1
• determines correct values for A and B	1

Question 16(b)

Solution		
$\sin 5x - \sin x = \sin 2x$	$0 \le x \le \pi$	
$\Leftrightarrow 2\cos\left(\frac{5x+x}{2}\right)\sin\left(\frac{5x-x}{2}\right) = \sin 2x$	converting to a product	
$\Leftrightarrow 2\cos 3x\sin 2x = \sin 2x$		
$\Leftrightarrow \sin 2x(2\cos 3x-1)=0$		
$\Rightarrow \sin 2x = 0 \text{ or } (2\cos 3x - 1) = 0$	$0 \le 2x \le 2\pi$ and $0 \le 3x \le 3\pi$	
$\Rightarrow 2x = 0, \pi, 2\pi$ or $3x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$		
$\Rightarrow x = 0, \frac{\pi}{2}, \pi \text{or} x = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}$		
$\therefore x = 0, \frac{\pi}{9}, \frac{\pi}{2}, \frac{5\pi}{9}, \frac{7\pi}{9}, \pi$		
Marking key/mathematical behaviours		Marks
• replaces $\sin 5x - \sin x$ with $2\cos 3x \sin 2$	2x	1
• rearranges equation to obtain $\sin 2x = 0$) and $(2\cos 3x - 1) = 0$	1
• solves both equations for x within $0 \le x$	$c \leq \pi$	1
 states all the correct solutions 		1
(note: use of degrees is not acceptable – do	omain is given in radians)	

Question 17(a)

Solution	
$y = \frac{1}{2}\sin 2x - 2$	
Marking key/mathematical behaviours	Marks
• determines correct vertical dilation value of $\frac{1}{2}$ and horizontal dilation	1
value of 2determines correct vertical translation value of -2 and equation	1

Question 17(b)

Solution	¢ Edit Zoom Analysis ◆ Zizu Euro ● Proc Lott	×
For graph $y = \frac{1}{\cos(3x - \pi)}, \ 0 \le x \le \pi$	$\begin{array}{c c} Y_{12}^{1} & & \\ Y_{22}^{1} & & \\ \hline \\ Sheet1 \ [Sheet2 \]Sheet3 \]Sheet4 \ [Sheet5 \] \\ \hline \\ \hline \\ y_{1} = \frac{1}{\cos{(3 \cdot x - \pi)}} \end{array} \qquad \qquad$	
asymptotes occur at when $\cos(3x-\pi)=0$	y2:0 y3:0	
$3x - \pi = -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}$ $-\pi \le (3x - \pi) \le 2\pi$	y4: y5: y6:	
Vertical asymptotes are	10 9	
$x = \frac{\pi}{6}, x = \frac{\pi}{2}, x = \frac{5\pi}{6}$		X
	Rad Real (
Marking key/mathematical behaviours		Marks
• recognises graph does not exist when $\cos(3x - \pi) = 0$		1
states the correct equations of the vertical	asymptotes	1

Question 17(c)

Solution	5	
	$\tan\frac{5\pi}{8} = \frac{-2\pm\sqrt{8}}{2}$	
$\tan x = \frac{2\tan\frac{1}{2}x}{1-\tan^2\frac{1}{2}x}$	0 2	
$\tan x = \frac{2}{1}$	$\tan \frac{5\pi}{8} = -1 + \sqrt{2} \text{ or } \tan \frac{5\pi}{8} =$	$-1 - \sqrt{2}$
$1 - \tan^2 \frac{1}{2}x$	0 0	
5π	Since $0 < \frac{5\pi}{8} < \pi$ then $\tan \frac{5\pi}{8}$	$=-1-\sqrt{2}$
Let $x = \frac{5\pi}{4}$	8 8 8	
$\Leftrightarrow \tan \frac{5\pi}{4} = \frac{2 \tan \frac{5\pi}{8}}{1 - \tan^2 \frac{5\pi}{8}}$		
$\Rightarrow \tan \frac{3\pi}{4} = \frac{8}{5\pi}$		
$4 1 - \tan^2 \frac{3\pi}{2}$		
δ		
$\Leftrightarrow 1\left(1-\tan^2\frac{5\pi}{8}\right) = 2\tan\frac{5\pi}{8}$		
$\Leftrightarrow \tan^2 \frac{5\pi}{8} + 2\tan \frac{5\pi}{8} - 1 = 0$		
$\Leftrightarrow \tan \frac{-1}{8} + 2\tan \frac{-1}{8} = 0$		
$5\pi -2 \pm \sqrt{4-4(1)(-1)}$		
$\Leftrightarrow \tan \frac{5\pi}{8} = \frac{-2 \pm \sqrt{4 - 4(1)(-1)}}{2(1)}$		
8 2(1)		
Marking key/methematical helpsylaure		Marka
Marking key/mathematical behaviours		Marks
• recognises to use $x = \frac{5\pi}{4}$		
4		1
5π		
• expresses $\tan \frac{5\pi}{4} = \frac{2 \tan \frac{5\pi}{8}}{1 - \tan^2 \frac{5\pi}{3}}$		
• expresses $\tan \frac{1}{4} = \frac{5\pi}{1}$		1
$1 - \tan^2 \frac{1}{8}$		
• rearranges equation and uses the guadra	tic formula	1
 rearranges equation and uses the quadra 	_	
uses the quadratic formula correctly to so	lve for $tan \frac{5\pi}{2}$ for 2 possible	
	8	1
values		
5π is possible and at		1
• recognises that $\tan \frac{5\pi}{8}$ is negative and st	ales the correct value	
Ľ		

Question 18(a)

In a circle, chords of equal length subtend equal angles at the centre.

Converse:

In a circle, equal angles at the centre are subtended by equal chords at the circumference.

Marking key/mathematical behaviours	Marks
states a correct converse	1

Question 18(b)

Solution

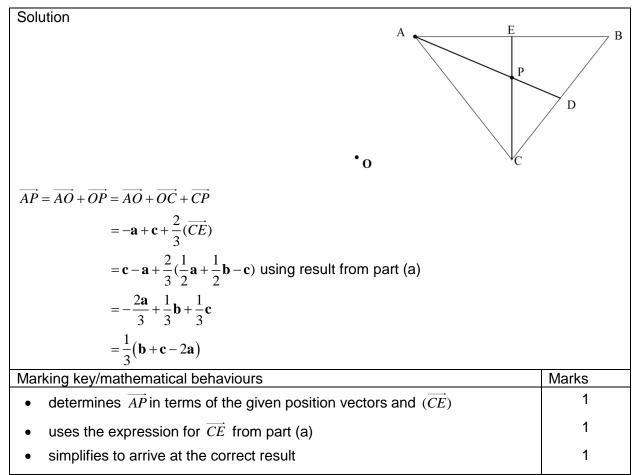
Statement: $P \Rightarrow Q$

Contrapositive: not $Q \Rightarrow$ not P

- (i) Hence, if an angle is not a right angle then the angle at the circumference is not subtended by a semi-circle.
- (ii) Correct.

An angle which is > 90 degrees at the circumference will be subtended by an arc that has a reflex angle > 180 degrees at the centre and hence the arc will be greater than a semi-circle. Similarly, an angle which is < 90 degrees at the circumference will be subtended by an arc that has an angle < 180 degrees at the centre and hence the subtending arc will be smaller than a semi-circle.

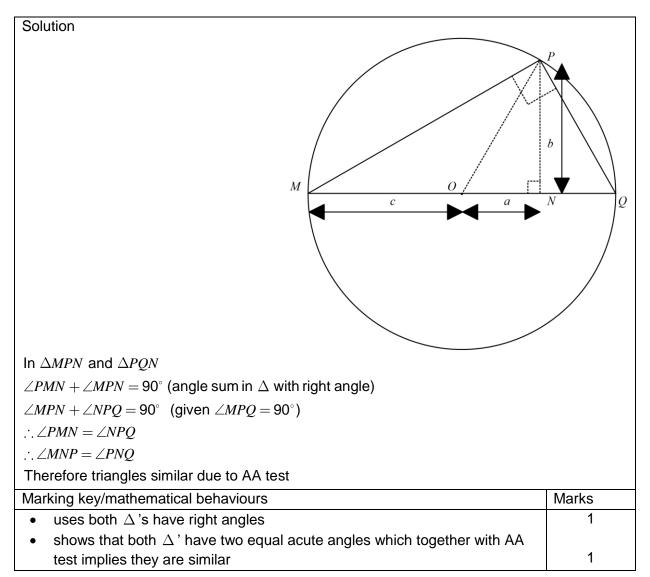
Marking key/mathematical behaviours	Marks
provides a correct contrapositive statement	1
indicates that the contrapositive statement is correct and provides a reasonable explanation	1
Provides a good explanation covering both cases	1


Question 18(c)

Solution	
Any $a > b$ where $b < 0 < a$	
e.g. $2 > -3 \Rightarrow \frac{1}{2} < -\frac{1}{3}$ is false	
Marking key/mathematical behaviours	Marks
provides a correct counter example	1

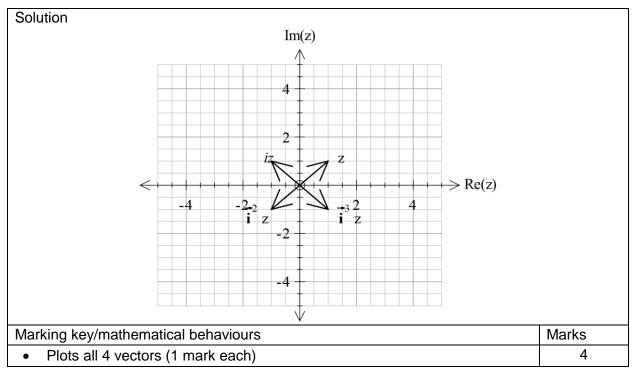
Question 19(a)

Solution A E	P B
$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\mathbf{a} + \mathbf{b}$	D
$\Rightarrow \overrightarrow{AE} = \frac{\mathbf{b} - \mathbf{a}}{2}$ $\therefore \overrightarrow{CE} = \overrightarrow{CO} + \overrightarrow{OA} + \overrightarrow{AE}$	
$= -\mathbf{c} + \mathbf{a} + \frac{\mathbf{b} - \mathbf{a}}{2}$ $= \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} - \mathbf{c}$	
Marking key/mathematical behaviours	Marks
determines \overrightarrow{AE} in terms of the given position vectors	1
• determines a correct expression for \overrightarrow{CE}	1


Question 19(b)

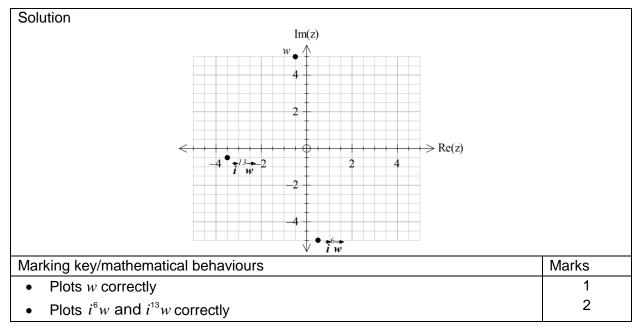
Question 20

Solution		
Rotation 1 is given by $R_A = \begin{bmatrix} \cos A & -\sin A \\ \sin A & \cos A \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$		
Rotation 2 is given by R _B = $\begin{bmatrix} \cos(-B) & -\sin(-B) \\ \sin(-B) & \cos(-B) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$		
Combined rotation is given by $R_{BA} = \begin{bmatrix} \cos B & \sin B \\ -\sin B & \cos B \end{bmatrix} \begin{bmatrix} \cos A & -\sin A \\ \sin A & \cos A \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$		
$\int \cos B \cos A + \sin B \sin A \cos A \sin B - \sin A \cos B$	7	
$= \begin{bmatrix} \cos B \cos A + \sin B \sin A & \cos A \sin B - \sin A \cos B \\ \sin A \cos B - \cos A \sin B & \cos B \cos A + \sin B \sin A \end{bmatrix}$		
Combined rotation is equivalent a rotation of $(A-B) = \begin{bmatrix} \cos(A-B) & -\sin(A-B) \\ \sin(A-B) & \cos(A-B) \end{bmatrix}$		
Hence $\cos(A-B) = \cos B \cos A + \sin B \sin A$		
Marking key/mathematical behaviours	Marks	
uses two rotation matrices	1	
multiplies matrices in correct order	1	
 simplifies trig expressions of -B 	1	
 calculates the correct element of the matrix product 	1	
 equates product to single rotation of A-B 	1	


Question 21(a)

Question 21(a)

Solution	
$\frac{NQ}{PN} = \frac{PN}{MN} \text{ similar } \Delta's$	
$\Rightarrow \frac{c-a}{b} = \frac{b}{c+a}$	
$\Rightarrow c^2 - a^2 = b^2$ by cross multiplication	
$arr \Rightarrow c^2 = a^2 + b^2$	
Marking key/mathematical behaviours	Marks
identifies corresponding sides are in proportion	1
 states side lengths in terms of a,b&c 	1
shows the required result	1


Question 22(a)

Question 22(b)

Solution	
No change to modulus, argument increases by anticlockwise 90 degrees	
Marking key/mathematical behaviours	Marks
States no change to modulus	1
States the correct direction anticlockwise by	1
States the correct magnitude of 90 degrees	1

Question 22(c)

